Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Neurol ; 23(5): 477-486, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631764

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy is a hereditary progressive myopathy caused by aberrant expression of the transcription factor DUX4 in skeletal muscle. No approved disease-modifying treatments are available for this disorder. We aimed to assess the safety and efficacy of losmapimod (a small molecule that inhibits p38α MAPK, a regulator of DUX4 expression, and p38ß MAPK) for the treatment of facioscapulohumeral muscular dystrophy. METHODS: We did a randomised, double-blind, placebo-controlled phase 2b trial at 17 neurology centres in Canada, France, Spain, and the USA. We included adults aged 18-65 years with type 1 facioscapulohumeral muscular dystrophy (ie, with loss of repression of DUX4 expression, as ascertained by genotyping), a Ricci clinical severity score of 2-4, and at least one skeletal muscle judged using MRI to be suitable for biopsy. Participants were randomly allocated (1:1) to either oral losmapimod (15 mg twice a day) or matching placebo for 48 weeks, via an interactive response technology system. The investigator, study staff, participants, sponsor, primary outcome assessors, and study monitor were masked to the treatment allocation until study closure. The primary endpoint was change from baseline to either week 16 or 36 in DUX4-driven gene expression in skeletal muscle biopsy samples, as measured by quantitative RT-PCR. The primary efficacy analysis was done in all participants who were randomly assigned and who had available data for assessment, according to the modified intention-to-treat principle. Safety and tolerability were assessed as secondary endpoints. This study is registered at ClinicalTrials.gov, number NCT04003974. The phase 2b trial is complete; an open-label extension is ongoing. FINDINGS: Between Aug 27, 2019, and Feb 27, 2020, 80 people were enrolled. 40 were randomly allocated to losmapimod and 40 to placebo. 54 (68%) participants were male and 26 (33%) were female, 70 (88%) were White, and mean age was 45·7 (SD 12·5) years. Least squares mean changes from baseline in DUX4-driven gene expression did not differ significantly between the losmapimod (0·83 [SE 0·61]) and placebo (0·40 [0·65]) groups (difference 0·43 [SE 0·56; 95% CI -1·04 to 1·89]; p=0·56). Losmapimod was well tolerated. 29 treatment-emergent adverse events (nine drug-related) were reported in the losmapimod group compared with 23 (two drug-related) in the placebo group. Two participants in the losmapimod group had serious adverse events that were deemed unrelated to losmapimod by the investigators (alcohol poisoning and suicide attempt; postoperative wound infection) compared with none in the placebo group. No treatment discontinuations due to adverse events occurred and no participants died during the study. INTERPRETATION: Although losmapimod did not significantly change DUX4-driven gene expression, it was associated with potential improvements in prespecified structural outcomes (muscle fat infiltration), functional outcomes (reachable workspace, a measure of shoulder girdle function), and patient-reported global impression of change compared with placebo. These findings have informed the design and choice of efficacy endpoints for a phase 3 study of losmapimod in adults with facioscapulohumeral muscular dystrophy. FUNDING: Fulcrum Therapeutics.


Assuntos
Distrofia Muscular Facioescapuloumeral , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Resultado do Tratamento , Piridinas , Ciclopropanos , Método Duplo-Cego
2.
Cell Transplant ; 33: 9636897241242624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600801

RESUMO

Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.


Assuntos
Cardiotoxinas , Distrofia Muscular Facioescapuloumeral , Adulto , Humanos , Masculino , Camundongos , Feminino , Animais , Xenoenxertos , Transplante Heterólogo , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/patologia
3.
J Pharmacol Exp Ther ; 374(3): 489-498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32576599

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the loss of repression at the D4Z4 locus leading to aberrant double homeobox 4 (DUX4) expression in skeletal muscle. Activation of this early embryonic transcription factor results in the expression of its target genes causing muscle fiber death. Although progress toward understanding the signals driving DUX4 expression has been made, the factors and pathways involved in the transcriptional activation of this gene remain largely unknown. Here, we describe the identification and characterization of p38α as a novel regulator of DUX4 expression in FSHD myotubes. By using multiple highly characterized, potent, and specific inhibitors of p38α/ß, we show a robust reduction of DUX4 expression, activity, and cell death across patient-derived FSHD1 and FSHD2 lines. RNA-seq profiling reveals that a small number of genes are differentially expressed upon p38α/ß inhibition, the vast majority of which are DUX4 target genes. Our results reveal a novel and apparently critical role for p38α in the aberrant activation of DUX4 in FSHD and support the potential of p38α/ß inhibitors as effective therapeutics to treat FSHD at its root cause. SIGNIFICANCE STATEMENT: Using patient-derived facioscapulohumeral muscular dystrophy (FSHD) myotubes, we characterize the pharmacological relationships between p38α/ß inhibition, double homeobox 4 (DUX4) expression, its downstream transcriptional program, and muscle cell death. p38α/ß inhibition results in potent and specific DUX4 downregulation across multiple genotypes without significant effects in the process of myogenesis in vitro. These findings highlight the potential of p38α/ß inhibitors for the treatment of FSHD, a condition that today has no approved therapies.


Assuntos
Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Células Musculares/metabolismo , Músculo Esquelético/metabolismo
4.
Front Mol Neurosci ; 13: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116541

RESUMO

LAMA2-related congenital muscular dystrophy, also known as MDC1A, is caused by loss-of-function mutations in the alpha2 chain of Laminin-211. Loss of this protein interrupts the connection between the muscle cell and its extracellular environment and results in an aggressive, congenital-onset muscular dystrophy characterized by severe hypotonia, lack of independent ambulation, and early mortality driven by respiratory complications and/or failure to thrive. Of the pathomechanisms of MDC1A, the earliest and most prominent is widespread and rampant fibrosis. Here, we will discuss some of the key drivers of fibrosis including TGF-beta and renin-angiotensin system signaling and consequences of these pathways including myofibroblast transdifferentiation and matrix remodeling. We will also highlight some of the differences in fibrogenesis in congenital muscular dystrophy (CMD) with that seen in Duchenne muscular dystrophy (DMD). Finally, we will connect the key signaling pathways in the pathogenesis of MDC1A to the current status of the therapeutic approaches that have been tested in the preclinical models of MDC1A to treat fibrosis.

5.
Hum Mol Genet ; 25(21): 4624­4634, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27798092

RESUMO

As the complexities of dystrophic pathology have been elucidated over the last few years, it has become increasingly clear that primary monogenetic defects result in multiple secondary pathologies capable of autonomously driving disease progression. Consequently, single-mode therapies fail to comprehensively ameliorate all aspects of pathology. Lama2-related muscular dystrophy (MDC1A) is a devastating congenital muscular dystrophy caused by mutations in the LAMA2 gene that results in multi-faceted secondary pathologies that include inflammation, fibrosis, apoptosis, and necrosis leading to severe muscle weakness and minimal postnatal growth. This study sought to implement a novel combinatorial treatment utilizing losartan, previously shown to ameliorate fibrosis and inflammation in conjunction with transgenic IGF-1 overexpression to improve postnatal growth. We found that dual-therapy rescued inflammation and fibrosis, improved weight gain, and led to remarkable restoration of muscle architecture and locomotory function in DyW mice (mouse model of MDC1A). We further showed using murine growth hormone that postnatal intervention with both therapies also yielded impressive amelioration of dystrophic pathology. Our results suggest for the first time that a combinatorial anti-fibrotic and pro-myogenic therapy could be the foundation of future therapies to a population of afflicted children in serious need.

6.
PLoS One ; 11(3): e0151515, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999812

RESUMO

Noncoding RNAs have emerged as important modulators in cardiac development and pathological remodeling. Recently, we demonstrated that regulation of the Gtl2-Dio3 noncoding RNA locus is dependent on the MEF2 transcription factor in cardiac muscle, and that two of its encoded miRNAs, miR-410 and miR-495, induce robust cardiomyocyte proliferation. Given the possibility of manipulating the expression of these miRNAs to repair the damaged heart by stimulating cardiomyocyte proliferation, it is important to determine whether the Gtl2-Dio3 noncoding RNAs are regulated in cardiac disease and whether they function downstream of pathological cardiac stress signaling. Therefore, we examined expression of the above miRNAs processed from the Gtl2-Dio3 locus in various cardiomyopathies. These noncoding RNAs were upregulated in all cardiac disease models examined including myocardial infarction (MI) and chronic angiotensin II (Ang II) stimulation, and in the cardiomyopathies associated with muscular dystrophies. Consistent with these observations, we show that the Gtl2-Dio3 proximal promoter is activated by stress stimuli in cardiomyocytes and requires MEF2 for its induction. Furthermore, inhibiting miR-410 or miR-495 in stressed cardiomyocytes attenuated the hypertrophic response. Thus, the Gtl2-Dio3 noncoding RNA locus is a novel marker of cardiac disease and modulating the activity of its encoded miRNAs may mitigate pathological cardiac remodeling in these diseases.


Assuntos
Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomiopatias/genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Loci Gênicos , Homeostase/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais/genética , Estresse Fisiológico/genética , Regulação para Cima/genética
7.
PLoS One ; 10(9): e0138254, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379183

RESUMO

PURPOSE: To elucidate the reliability of MRI as a non-invasive tool for assessing in vivo muscle health and pathological amelioration in response to Losartan (Angiotensin II Type 1 receptor blocker) in DyW mice (mouse model for Laminin-deficient Congenital Muscular Dystrophy Type 1A). METHODS: Multiparametric MR quantifications along with histological/biochemical analyses were utilized to measure muscle volume and composition in untreated and Losartan-treated 7-week old DyW mice. RESULTS: MRI shows that DyW mice have significantly less hind limb muscle volume and areas of hyperintensity that are absent in WT muscle. DyW mice also have significantly elevated muscle levels (suggestive of inflammation and edema). Muscle T2 returned to WT levels in response to Losartan treatment. When considering only muscle pixels without T2 elevation, DyW T2 levels are significantly lower than WT (suggestive of fibrosis) whereas Losartan-treated animals do not demonstrate this decrease in muscle T2. MRI measurements suggestive of elevated inflammation and fibrosis corroborate with increased Mac-1 positive cells as well as increased Picrosirius red staining/COL1a gene expression that is returned to WT levels in response to Losartan. CONCLUSIONS: MRI is sensitive to and tightly corresponds with pathological changes in DyW mice and thus is a viable and effective non-invasive tool for assessing pathological changes.


Assuntos
Laminina/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofias Musculares/patologia , Distrofia Muscular Animal/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Losartan/farmacologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/metabolismo , Distrofia Muscular do Cíngulo dos Membros/dietoterapia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/metabolismo , Reprodutibilidade dos Testes
8.
J Vis Exp ; (99): e52793, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26066009

RESUMO

Histological evaluation of muscle biopsies has served as an indispensable tool in the understanding of the development and progression of pathology of neuromuscular disorders. However, in order to do so, proper care needs to be taken when excising and preserving tissues to achieve optimal staining. One method of tissue preservation involves fixing tissues in formaldehyde and then embedding them with paraffin wax. This method preserves morphology well and allows for long-term storage at RT but is cumbersome and requires handling of toxic chemicals. Further, formaldehyde fixation results in antigen cross-linking, which necessitates antigen retrieval protocols for effective immunostaining. On the contrary, frozen sectioning does not require fixation and thus retains biological antigen conformation. This method also provides a distinct advantage in quick turn around time, making it especially useful in situations needing quick histological evaluation like intraoperative surgical biopsies. Here we describe the most effective method of preparing muscle biopsies for visualization with different histological and immunological stains.


Assuntos
Secções Congeladas/métodos , Músculos/citologia , Animais , Antígenos/análise , Biópsia/métodos , Formaldeído , Camundongos , Inclusão em Parafina/métodos , Coloração e Rotulagem/métodos , Fixação de Tecidos/métodos
9.
J Neuromuscul Dis ; 2(1): 51-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28198706

RESUMO

BACKGROUND: Merosin-deficient congenital muscular dystrophy (MDC1A) is caused by a loss of Laminin-α2. Secondary manifestations include failed regeneration, inflammation, and fibrosis; however, specific pathomechanisms remain unknown. OBJECTIVES: Using the LAMA2DyW (DyW) mouse model of MDC1A, we sought to determine if Integrin-αV and -α5, known drivers of pathology in other diseases, are dysregulated in dystrophic muscle. Additionally, we investigated whether Losartan, a drug previously shown to be antifibrotic in dystrophic scenarios, rescues integrin overexpression in DyW mice. METHODS: qRT-PCR, ELISA, and immunohistochemistry were utilized to characterize integrin and matricellular protein dysregulation in hind limb muscles from WT and untreated/ Losartan-treated DyW mice. RESULTS: Integrin-αV and -α5 are significantly upregulated on both gene and protein level in DyW muscle- Losartan treatment attenuates this dysregulation. Immunohistochemistry showed that Integrin-αV is expressed on both infiltrating cells as well as on muscle cells- Losartan attenuates expression in both compartments. In addition, transcriptional overexpression of common matricellular and beta binding partners is rescued close to WT levels with Losartan. Lastly, latent and active TGF-ß are upregulated in the serum of DyW mice, but only active TGF-ß levels are attenuated by Losartan treatment. CONCLUSIONS: Our results suggest that overexpression of Integrin-αV and -α5 are likely contributing to secondary pathologies in MDC1A. We also believe that downregulation of Integrin-αV could be partially responsible for Losartan's antifibrotic effect and therefore could serve as a novel therapeutic target in MDC1A and other degenerative fibrotic diseases.

10.
Skelet Muscle ; 4: 14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25075272

RESUMO

BACKGROUND: MDC1A is a congenital neuromuscular disorder with developmentally complex and progressive pathologies that results from a deficiency in the protein laminin α2. MDC1A is associated with a multitude of pathologies, including increased apoptosis, inflammation and fibrosis. In order to assess and treat a complicated disease such as MDC1A, we must understand the natural history of the disease so that we can identify early disease drivers and pinpoint critical time periods for implementing potential therapies. RESULTS: We found that DyW mice show significantly impaired myogenesis and high levels of apoptosis as early as postnatal week 1. We also saw a surge of inflammatory response at the first week, marked by high levels of infiltrating macrophages, nuclear factor κB activation, osteopontin expression and overexpression of inflammatory cytokines. Fibrosis markers and related pathways were also observed to be elevated throughout early postnatal development in these mice, including periostin, collagen and fibronectin gene expression, as well as transforming growth factor ß signaling. Interestingly, fibronectin was found to be the predominant fibrous protein of the extracellular matrix in early postnatal development. Lastly, we observed upregulation in various genes related to angiotensin signaling. METHODS: We sought out to examine the dysregulation of various pathways throughout early development (postnatal weeks 1-4) in the DyW mouse, the most commonly used mouse model of laminin-deficient muscular dystrophy. Muscle function tests (stand-ups and retractions) as well as gene (qRT-PCR) and protein levels (western blot, ELISA), histology (H&E, picrosirius red staining) and immunohistochemistry (fibronectin, TUNEL assay) were used to assess dysregulation of matricelluar protieins. CONCLUSIONS: Our results implicate the involvement of multiple signaling pathways in driving the earliest stages of pathology in DyW mice. As opposed to classical dystrophies, such as Duchenne muscular dystrophy, the dysregulation of various matricellular proteins appears to be a distinct feature of the early progression of DyW pathology. On the basis of our results, we believe that therapies that may reduce apoptosis and stabilize the homeostasis of extracellular matrix proteins may have increased efficacy if started at a very early age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...